M SOSYS Di sassenbler - Disk version |1

DDDDD SSSSS MV MV BBBBB LL RRRRR
DD DD SS SS MW MwW BB BB LL RR RR
Db DD SS MWWMW BB BB LL RR RR
DD DD SSSSS MM MMWMW BBBBBB LL RRRRR
DD DD sSs mw™m MM BB BB LL RR RR
DD DD SS s§ MM MW BB BB LLLLLLL RR RR
DDDDD SSSSS MV MV BBBBB LLLLLLL RR RR

Copyright (c) 1983 by Roy Soltoff

Progranmers have probably been di sassenbling machi ne code prograns since
the tine prograns were being "hand" assenbled. Wt is a disassenbly? Sinply
the reverse process of assenbly - taking a program or a piece of a program
and translating it back to an assenbly |anguage state. This disassenbler is

a tool for helping you with the process. DSMBLR 111 is a third generation
pr oduct . This tool provides extensive capabilities such as direct
di sassenbly from CVD disk files, automatic partitioning of output disk files,
data screening for non-code regions, and full |abel generation. DSMBLR 111

even generates the ORGs and END statenent - the conplete ball of wax.

Surely a tool of this capability should be difficult to use. Not so! You
will find that the use of this disassenbler - even by a beginning assenbly

| anguage programmer - will be paying handsone rewards with the ease of its
use and clarity of these instructions. DSMBLR IIl is a professional tool for
your use.

TABLE OF CONTENTS

GENERAL Lo 2
D STRIBUTION DI SKETTE 2
EXECUTION INSTRUCTIONS 3
CONTROL FUNCTION OPTIONS 4
INPUT MODE SPECIFICATIONS & 6
DI SASSEMBLY ADDRESS PROWTS 7
SCREENI NG DATA ENTRY 8
QUTPUT COMVAND OPTIONS 11
DEVELOPI NG A SOURCE PROGRAM 15
DEVELOPI NG SCREENING DATA 16
APPENDIX 19

DSMBLR - 1

M SOSYS Di sassenbler - Disk version |11

The M SOSYS disassenbler is a machine |anguage |abeling disassenbler
that supports direct disassenbly from "CVD' files. The generated output can
be directed to a line printer, the video screen, or automatically partitioned

into multiple disk files. DSMBLR-111 functions with the Radio Shack TRS-80
Model | or Model 111 mcroconputers. PRO- DUCE functions under LDOS 6. X. X.
This disassenbler operates in two passes in order to incorporate synbolic
| abels in the source output. The synbolic |abels are generated for address

and 16-bit nuneric references with the start-to-end user disassenbly request
or the scope of the CVMD file. Al address references not coincident with the
start of an instruction's address within the range of the disassenbly are
out put as equates (EQJ) which can be optionally suppressed.

You are assuned to be famliar with Z-80 assenbler nmmenonics as
specified in the ZILOG "Z-80 ASSEMBLY LANGUAGE PROGRAM MANUAL", 3.0 D.S.,
REL 2.1, FEB 1977. MNMany texts can be |ocated which provide various insights
into Z-80 assenbly |anguage progranmm ng. Do not overlook articles on
assenbl er routines appearing in the magazi ne and journal nedia.

This version provides a disk file output in standard un-nunbered ASCl I
format conpatible with the M SOSYS editor/assenbler EDAS. Options are
provided to add a file "header"”, line nunbers, or a colon (:) after |abels
except those defined with EQU. These options permt the output file to be
altered to suit other assenblers.

DI STRI BUTI ON DI SKETTE

The Disassenbler Version Il is a machine | anguage program supplied on a
data di sk. For Model /111 wusers, DSMBLR-I1l is supplied on a 35-track
singl e-density LDOS data diskette [Mddel 111 TRSDOS users must use the TRSDOS

"CONVERT" wutility to transfer files from the distribution diskette to their
SYSTEM di skette. Mdel 1 TRSDOS 2.3 users MJST READ THE APPENDI X]. The LDOS
6.X.x conpatible PRODUCE is distributed on a 40-track single density
di skette. Each distribution diskette contains two copies of the disassenbler.
One is nanmed "DSMBLR/CVD' with the other is "DSMBLER/ BKU' and is a backup
copy of the forner. Three other files are included. "SCRI PSI T/ TXT" is a text
file containing screening data for the Radio Shack Mdel | version of
SCRIPSI T/LC. By disassenbling a copy of SCRIPSIT/LC using this text file for
screening data, a good set of source files are output.

Two other files are "BINHEX CMD' and "Bl NHEX/ TXT". These files are

supplied to serve as an exanple of program disassenbly. The section on
"Screening Data Entry" explains the use of these files.

LDOS is a trademark of Logical Systens, Inc.

TRSDCS is a trademark of Tandy Corp.

DSMBLR - 2

M SOSYS Di sassenbler - Disk version |1

EXECUTI ON | NSTRUCTI ONS

DSMBLR [fil espec] [(col on, header, | i nes=xx, nunber, si ze=yy)]

wher e:

fil espec Is the filespec of the disk file you want to
di sassenble. If you omt the file extension
"/CMD' will be assunmed. The filespec is

optional. Programpronpts will query you as

to the input node if the filespec is omtted

col on

Specifies that you want the disassenbler to
append a colon (:) to synmbols in the |abe
colum that are not defining EQUates.

header Is a paraneter to force any output file

to generate a header string prior to the
first source line. The header will consist
of X D3' followed by the first six characters

of the output filespec.

I i nes=xx Specifies that you want the line printer
output to issue a formfeed (X 0C) after

xx" nunber of |ines have been printed. The

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|) I nes : :
| di sassenbl er naintains an internal |ine

| counter that increnents on each carriage

| return. The default setting of "lines" is 56
| Thus, if you set your form paper to start
| printing on the fifth line fromthe top of
| the form the disassenbler will maintain a
| five-line margin top and bottomon 11" paper.
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

nunber - Specifies that you want the output disk file
to add line nunbers on each line. The line
nunbering starts with 00001 and increnents
by 00001 for each line. The format used is a
5-character ASCI|I nunber with the high-order
bit set. The nunber is imediately foll owed
with a space. Note: video and printer output
i s always nunbered

si ze - Specifies the maxi num size of the output disk
file before partitioning. Size will default
to 12K. See the text on output file
partitioning.

Parameters may be abbreviated to their first letter
Command line entries in square brackets "[]" are optional

DSMBLR - 3

M SOSYS Di sassenbler - Disk version |11

CONTROL FUNCTI ON OPTI ONS

The disassenbler supports options to control the disassenbly. These
options are entered in response to the foll owi ng nmessage:

Control function: <D>CS exit, <C>lear table, toggle <E>quates
<S>ystemtape, <T>est tape (D,CEST)? >

The <S> and <T> options are only available on the Mddel | and Ill conputers.
Each time you enter an option, the pronpting nessage will re-appear (unless
you have selected <D> - exit to DOS). Wen you have conpleted your option
speci fication, depress <ENTER> and the disassenbler will proceed to the next
pronpt. A discussion of the purpose of each option foll ows.

Each tine you conplete a disassenbly, the disassenbler will return to
the control function pronpt. The <D> option is used to return control to the
DOS comrand interpreter. This is the way in which you exit the disassenbler.
The "DOS READY" nessage will be displayed.

DSMBLR is a two-pass disassenbler. The first pass disassenbles the
target program and builds a table used for the generation of symnbolic |abels.
Qutput is not generated during this pass. After the first pass conpletes, the
synmbol table is not reset until cleared. Subsequent disassenblies proceed
imediately with pass two - the pass which produces output. The first pass is
performed only when the synbol table buffer region is "cleared". By issuing
the <C> option the buffer is cleared and the foll owi ng nessage is di spl ayed:

Synbol table cleared

VWen the disassenbler first executes, it is placed in a node that
simul ates an un-cleared synbol table. The SYMBOL table is regenerated only
when the table is cleared using the control function <C. This is done to
enable you to quickly scan a nenory region wthout having to wait for the
first pass to conplete. If you choose to disassenble directly from disk, you
do not need to specify the <C option as it is automatically perfornmed.

It is cormon practice to define program constants and address references
to other prograns at the front end of a source program by neans of equate
statements (with the assenbler pseudo-op, EQJ). Wen the target program
contains address references that precede the start-of-disassenbly, these
references will be output as EQU statenents. Equates are also generated for
each synbolic label found in the synbol table that does not correspond to the
start of an instruction. These |abels are output in the form

LABEL EQU $-n

where "n" is the offset to the |abel address from the current program
counter. Equates are also generated for all address references that extend
beyond the end of the target program

You may chose to suppress the generation of equates in the disassem
bler's output by using this option. Equate generation will be either on or
off. A flag control is used to indicate the ON or OFF node. You reverse the
flag's status every time you enter the <E> option. As is the case with the
<C> option, a disassenbly directly fromdisk will force the flag to be ON

DSMBLR - 4

M SOSYS Di sassenbler - Disk version |11

The status of equate generation is shown each tine the Control Function
pronpt is issued.

The <S> option is available only on the Mdel | or Mdel 11l computer.
It will |load a SYSTEM programinto nenmory. It is strongly suggested that you
transfer a SYSTEM tape program to a CVD disk file and directly disassenble
the disk file. The <S> option will identify the programis FILENAVE, its
STARTi ng address, its ENDing address and it's TRANSFER address (the |ocation
that control wll be transferred to after |loading a SYSTEM program via the
SYSTEM conmmand and issuing the "/" <ENTER>). The programis FILENAME and
address information will be displayed in the nmessage:

FI LNAM START=xxxx, END=yyyy, TRANSFER=zzzz

where xxxx, yyyy and zzzz are displayed in hexadecimal. Also, if the program
| oads without a checksum error, the START and END variables will be retained
for automatic use in the disassenbly. Caution should be observed if you
suspect that the program may overlay the operating system If the program
| oads bel ow 5200H, your system will probably crash. You will be inforned if
the program will overlay the disassenbler. It is suggested that when in
doubt, use the <T> option first.

The <T>est option operates just like the <S> control function. However,
since you may want to discover the address load information wthout
physically loading the program this conmand wll do just that. The
information is identified, but the program is not |oaded into nmenory. The
START and END variables are updated. Renmenber, it is best to transfer a tape
programto di sk and use disassenbly directly from disk.

DSMBLR - 5

M SOSYS Di sassenbler - Disk version |11

I NPUT MODE SPECI FI CATI ON

Whenever you exit the Control Function pronpts, you will be pronpted to
enter the node of input. Two nodes are available, disk (D) or nmenory (M. The
pronpt nessage is as foll ows:

I nput: <D>isk or <Mrenory (DM? >

If you are disassenbling from nmenory, you will receive pronpts to specify the
starting, ending and relocation addresses to be used for the disassenbly.
These pronpts are shown in the next section entitled "D sassenbly Address
Prompt s”. If your disassenbly is from a CVD-type load nodule file (by
entering <D>), you will receive a pronpt to enter the filespec wth:

Enter fil espec? >
If you do not specify a file extension, "/CVD'" will be used. |If the file you
specified is opened properly, the disassenbler wll interrogate you for

screeni ng data. This is discussed in the section entitled "Screening Data
Entry".

DSMBLR - 6

M SOSYS Di sassenbler - Disk version |11

DI SASSEMBLY ADDRESS PROVPTS

VWenever you request a disassenbly from nmenory (disassenblies from disk

will automatically use the entire CVD file), you will be pronpted to enter
the storage |locations of the program you want to di sassenble. The addresses
are entered in hexadecinal. Full line input control keys (backspace, |ine
delete, etc.) are supported as in BASIC or DOS command i nput. In addition,

you may enter the value wthout |eading zeroes (0000 as 0, 06CC as 6CC or
6cc, etc.). The hexadeci mal nunbers X A" through X FF rmay be entered in | ower
case as well as upper case. These pronpts appear as foll ows:

Start address = >

Enter the nenory address at which the disassenbly should begin. This
will be the first menory location that wll be disassenbled. If the <S>
control function was used to load a SYSTEM program this value would be
automatically set to the prograns START address.

End address = >

This is the menory address at which disassenbly shoul d cease (Note that
di sassenbly will rum from START up to but not including END so END shoul d be
one nenory position beyond where you want to stop the disassenbly). For
exanmple, if you want to disassenble nmenory from X 0000 through X 2FFF , END
shoul d be entered as "3000". The disassenbler will not function properly if
END is entered as "FFFF'. Simlar to START, this variable will be set to one
greater than the end address if the program to disassenble was |oaded with
the "S" control command.

Rel oc addr ess

If you had to nove the program that you are disassenbling (termed the
target progran) to an address area different from where it originally |oaded
because it would have overlayed (loaded into the sane region as) the
di sassenbl er, the START address should be entered here. For exanple, if the
target program originally |oaded from 5000H through 5500H and you nove it to
| oad at 7000H through 7500H, then use START=7000, END=7500, RELOC=5000. This
feature is useful to recover proper address references to code that may have
been relocated to a higher or lower address in order to elimnate conflict
with the load point of the disassenbler. Prograns nmay be noved by using
CVDFI LE, the extended DEBUG, or other such utility.

Address entries are retained by the program until changed by entering
new values. Therefore, subsequent disassenblies wusing previously entered
address information can be performed just by depressing the <ENTER> key.
Al so, responses to three address pronpts nmay be entered on one line by
separating each with a comma. For exanpl e:

Start address = >150, 400, 150
will input STARTing address of X 150', ENDing address of X 400', and
RELOCati on address of X 150° (a relocation address of X 150" would also be

used by omtting the relocation entry and depressing <ENTER> in response to
the "Rel oc address" query).

DSMBLR - 7

M SOSYS Di sassenbler - Disk version |11

SCREENI NG DATA ENTRY

Just about every programthat you will disassenble has segnents that are
actual code and other segnents that are data. The disassenbler will assune
that all segnents are actual code unless told otherwi se. The "screening data"
entry is the way in which you tell the disassenbler what segnents of the
program are to be interpreted as data regions. The disassenbler will pronpt
you with the nmessage:

Enter screening fil espec or <ENTER>

If you have NOT prepared screening text, depress <ENTER> and the di sassenbl er
will proceed to the ouptut conmand pronpt. If you have prepared a screening
text file, enter its file specification. If you omt the file extension,
"/TXT* will be assuned. If you are using LDOS or another LDOS comnpati bl e DOS,
you may enter "*KI" as the specification and enter your data from the
keyboar d. Your entries will be echoed to the video screen; however, all
characters are treated as text data - backspace is non-functional. Using *KI
is a quick-and-dirty nmethod of entering a very brief amunt of screening
text.

You must arrive at the addresses of the "segnents" by an analysis of the
t ar get program For instance, a first disassenbly to the video screen wll
easily identify literals since the ASCII equivalent of the object code is
di spl ayed. Make note of the address ranges on a piece of scrap paper to be
used in building a text file of screening data fields. The "smarter" you are
in assenbly |anguage, the easier it will be to identify word and byte data.
The section entitled, "Devel oping Screening Data" wll provide hints and
techniques to aid you. Once you build your text file, repeat the disassenbly
process to "purify" the resultant output. Wth a little bit of effort, you
can rapidly construct a perfect source code inmage.

The address ranges are entered in the follow ng formats:

aaaa- bbbb = Treat as data, all bytes in the range X aaaa'
t hrough X bbbb' inclusive (aaaa <= bbbb).

-cccce = Treat as data, all bytes in the range X 0000
t hrough X cccc' inclusive.

dddd- = Treat as data, all bytes in the range X dddd’
t hrough X FFFE i ncl usi ve.

eeee = Treat as data, the byte at address X eeee'

If during a disassenbly, a "properly" decoded instruction extends into a
screening data range entered, data will be interpreted starting with the next
addr ess.

Since each programis data structures are unique, the disassenbler
accepts screening data entries in a loose format. The fields are entered as
plain text using the EDAS editor, nost word processors that provide ASC I
output, or even via the BASIC program TEXT/BAS, listed in the APPENDI X. Each
field is separated by a comma delimter. Carriage returns nmay be entered and
take the place of a comma (that neans that if you use discrete lines, the
entire field nmust be contained on one line. Any entered spaces are ignored.

DSMBLR - 8

M SOSYS Di sassenbler - Disk version |11

The input streamis termnated by entering a period (.) after the last field
entry.

Data usually take one of three fornms: literal fields commonly called
strings (words that you can read - i.e. nessages, pronpts, etc.); byte fields
of varying length with each byte a distinct value (tables, conversion codes,
one-byte length specifiers), "confusion" bytes (hex values placed to alter
the sense of follow ng code depending on entry point; and "words" of varying
length (16-bit values commonly used as pointers, arithnetic values, etc.).
The disassenbler recognizes certain prefix specifiers to force the data
generation to literal, byte, or word formats.

Prefixing the screening field with a dollar sign ($) will force literal
deconposition with the output fornmed into "DB 'string' " (equivalent to DEFM
pseudo- OP decl arations. A pound sign (#) will force the data to be deconposed
into words using "DW Mxxx" (equivalent to DEFW pseudo-OP declarations. The
DW operand fields wll be in synbolic name ("label") format - wth the
resulting 16-bit values forcing an entry into the synbol table. The default
wi Il be deconposition into "DB xxH' declarations if no prefix is specified.

VWere a literal has been forced, the disassenbler nmaintains a range
check for the characters. Valid literal characters are in the range X 20'-

X 26" and X 28 -X7E . If a character value is outside this range, the
deconposition will automatically revert to "xxH format starting with that
character and continuing until a character within the literal range is

detected. For exanple, The byte sequence:
4C 61 6E 27 74 0D

wi || deconpose to the pseudo-OP decl aration:
DB<t ab>' Can', 27H,"'t', ODH

Note that multiple operands are generated on a single line with each offset
by a comma. The M SOSYS assenbl er accepts this syntax on DB and DW pseudo-
OPs. It permts intermxing byte and literal operands with the DB pseudo- OP.
If the assenbler you will use to assenble the output does not support this
construct, you will have to separate the line into multiple lines once you
obtai n your output file.

The disassenbler wll output approximately 18 characters in the operand
field of a line. If the screening range is such that the deconposition would
exceed that limt, a subsequent line is generated. Also, any |abels that
would be addressed in the scope of the DB or DW field will be output

imediately following the Iline. This would appear as "LAS8EL EQU $-n", where
"n" is the offset from the current program counter. If the label is valid,
you may want to split your screening field into two fields starting the
second at the |abel address and ending the first one address before the
| abel .

A sanpl e screening data input is as foll ows:

5228- 5229, $5384- 53aa, #5829- 5832, 5416
$5b20- 5b3d, 5f 67- 5f 68.

DSMBLR - 9

M SOSYS Di sassenbler - Disk version |11

Note that a line termnated by a carriage return does not have a term nating
conmea. Also, the final character is a period (which may be followed by a
carriage return). Note also that the fields do not have to be in ascending
order (however, a range specification nust be LOMHGH i.e. the first
address entry nust be less than or equal to the second address entry. The
di sassenbler will sort the fields by address after they are parsed. Thi s
makes it easy to add to the screening data as you "purify" your disassenbly
of a particul ar program

The distribution disk contains a few screening text files. One is for

Radi o Shack Mddel | SCRIPSIT (SCRIPSIT/TXT). Another is BINHEX/ TXT which is
the screening data for the sanple public-domain program BINHEX/ CVD, which is
i ncl uded on your disassenbler diskette. BINHEX is a Mdel I/11l program that

converts a binary "CMD' file to ASCII in a HEX format (simlar to Intel's HEX
format). BINHEX was originally witten in BASIC by Tinothy Mann to use for
transmtting CVD files over a 7-bit communication's line. It was further
nodified and then conpiled wusing Bill Stockwell's BASICS conpiler.
BINHEXYCMD is in the public domain and is included for you to disassenble -
as an exercise. The BINHEX/ TXT file has been devel oped by M SCSYS to be used
as screening data while disassenbling BINHEXYCVMD. |If you need the experience,
it is suggested that you "play" with the disassenbly of BINHEX prior to using
the supplied text file as screening data. Develop your own screening data
file and compare it to ours.

The SCRIPSI T/ TXT file can be used by those folks with access to a Radio

Shack Model |1 version of SCRIPSIT/LC. When used as a screening data file, it
shoul d produce a useful set of source files - uncomment ed!

DSMBLR - 10

M SOSYS Di sassenbler - Disk version |11

QUTPUT COMVAND CPTI ONS

The output device to receive the disassenbly output is determned in
response to the pronpt:

Qut put: <R>eview, <S>creen, <P>rinter,
<T>ape, <Dsisk (R S,P,T,D)? >

The <T>ape option is available only on the Mdel | and Mdel 111 conputers.
Sel ect one of the devices by entering its respective letter.

During the disassenbly, the byte value of instructions that have a byte-
value operand will be displayed in either of two formats depending on the
value of the byte. Bytes in the range X 20'-X 26" or X 28 -X7E wll be
output as literals in the form "'c¢c'". Al other values are displayed in the
form "xxH', or if the value is in the range X A0'-X FF, "OxxH'. The byte
values of index instruction offsets are output in the non-literal format
only. Also, the port nunmber of IN and QUT instructions is kept non-literal.
In nmost cases, this display format provides nmore neani ngful information than
di splays strictly in the non-literal format. Sonetines, the literal
presentation |ooks foolish. Since the display format is chosen by ranging,
pl ease accept the conprom se approach chosen for the disassenbler. You wll
notice output displays such as:

100C 2814 02442 JR Z,ML022 (.
100E FE45 02443 'E .E
1010 2810 02444 Z, MLO22 (.
1012 FE44 02445 'D .D
1014 280C 02446 Z, MLO22 (.
1016 FE30 02447 ‘o 0

Z, MLOOA (p

Z, MLOOA (1

1018 28F0 0244d
101A FE2C 02449
101C 28EC 02450
101E FE2ZE 02451
1020 2003 02452

29595935939

NZ, MLO25

whi ch provide a greater ease in understanding the |logic of a program

<R>EVI EW

The <R>eview function wll produce a screen listing identical to that
di scussed under <S>creen. The exception is that the listing will be displayed
in a continuous scroll instead of a screen at a time. The scrolling may be

temporarily suppressed by depressing the <PAUSE> (or <SH FT-@) key. Any
character entry except <PAUSE> will resune the scrolling.

<S>CREEN

The <S>creen output is directed to the video CRT. Qutput is scrolled for
24 lines (16 on Model | or Mdel I11), then paused. The next "page" commences
upon depression of any keyboard key. Depressing <BREAK> will| interrupt output

and return you to the pronpti ng nessage.

DSMBLR - 11

M SOSYS Di sassenbler - Disk version |11

The out put di splay consists of the follow ng references:
1. Effective nmenory address of the instruction.

2. Contents of nenory starting from the instruction's physical menory
location for as many bytes as the instruction's length. Qutput is in
hexadeci nal .

3. Sequential Iline nunber, in decimal, starting from 00001 and
i ncrenented by 00001.

4. A SYMBOLI C LABEL, where referenced as a 16-bit or relative value by
the program to be disassenbled, consisting of the address referenced
preceded by the letter "M.

5. The disassenbled instruction wusing ZILOG menonics. The tab
character between the OP code and the OPERAND is expanded for screen
di spl ay.

6. Character output (in ASCI1) of the instruction's hexadeci mal val ues.
Bit 7 is stripped from each byte prior to display in order to better
identify character strings that utilize bit 7 for "begin-string" or

"end-string"” detection. Non-printable characters are converted to a
peri od.

<P>RI NTER
This function will provide the same output as the <S> function except

that the output is directed to the LINE PRI NTER The output is printed 56
lines per page or other anount depending on your optional LINES paraneter.
Each page is nunbered sequentially starting from 00001 and increnented by
00001. A heading which | abels each colum is provided on each page.

VWen the printer command is entered, the program will request you to
enter a title and position the printer paper to receive the output listing.
The pronpt:

Ready printer and enter title

will be displayed. If you are using the 56 |ines per page default, your paper
shoul d be positioned to start printing on the sixth Iine of the page. This
will provide a top and bottom margin of five lines each on eleven inch paper
whi ch takes 66 |ines per page. You nmay enter a title of up to twelve (12)
characters which wll be placed in the heading on each page of printed
out put . After depressing <ENTER> following the title, the disassenbly wll
automatically start. By depressing the <BREAK> key at any tine during the
printing, the output will be interrupted and you will return to the pronpt
message (Model | or Mddel 111 users can only interrupt the printing while the
printer is in a "ready" state).

<T>APE
This command, available only on the Mddel | or Mdel 111, will create a
source cassette tape suitable for loading into the Radio Shack cassette

Editor Assenbler or Mcrosoft's EDTASMt. After entering the <T>ape conmand,
you will be pronpted to prepare the cassette for witing with the nessage:

DSMBLR - 12

M SOSYS Di sassenbler - Disk version |11

Ready cassette and Enter (Model 1)
Ready cassette and Enter <H L> (Mdel 111)

Depression of the <ENTER> key wi || cause the disassenbly to start. If you are
using a Mddel I11 nmachine, you must select the appropriate speed of the tape
file by entering either "H' for 1500 baud or "L" for 500 baud generation. You
must specify the paraneters HEADER and NUMBER when executing the di sassenbl er
to properly construct an output tape. The output consists of:

1. The 5-digit ASCII |ine nunber,
2. The SYMBOLIC LABEL (or tab if a label is not required),

3. The disassenbled instruction. The tab character between the COP
code and the OPERAND i s not expanded.

The tape is created in blocks consisting of 256 lines of output per
bl ock. File nanmes are assigned sequentially. The first is "BLOCKA', the
second is "BLOCKB", etc., increnmenting the sixth character by one letter for
each block. A five (5) second blank segnment is witten between each block to
provide a manual search capability. An asterisk (*) blinks in the upper right
hand corner of the screen (3C3FH) for every two lines of output. The starting
address of the block will be output to the screen. Depressing the <BREAK> key
will interrupt the tape output only during the period of asterisk blinking.

| SK

The <D> function provides the capability of generating a source disk
file which can be | oaded into the M SOSYS editor assenbler, EDAS. The file(s)
will be un-nunbered and un-headered unless the NUVBER and/or HEADER
paraneters were entered on the disassenbler execution command line. You wll
be pronpted to enter the filespec with the pronpt:

Enter fil espec? >

If you omt the file extension, "/ASM w |l be used as a default. After
entering the desired filespec, the source file wll be created. It is
entirely possible that a disassenbly could create a file larger than wll
| oad i nto EDAS dependi ng on your system s nenory configuration and the nenory
region or disk file being disassenbled. In order to nake sure that this does
not happen, the disassenbler will automatically partition the output into
multiple files once a file reaches the maxinum size as specified with the
SI ZE par aneter.

In order to acconplish the output partitioning, the disassenbler first
makes sure that the diskette receiving the output has free space sufficient
to store the maxinum size file. As each line is witten to the output file,
the disassenbler checks to see if the last sector of the file has been
reached. Processing continues if the output has not reached the |ast sector;
however, if the last sector has been reached, the EOF character (X 1A") is

witten and the file is closed. If the output filespec originally contained
not nore than seven characters, a new filename wll be automatically
constructed by appending "A" to the filename. Assuming all goes well, you

will be informed of the automatic generation of this file by the nmessage:

Qutput file is full. Creating file: fil espec

DSMBLR - 13

M SOSYS Di sassenbler - Disk version |11

The new file will be created and processing will continue until this new file
reaches the maxi num S| ZE If a third output file is needed, the '"A is
replaced by 'B'. This will continue for '"C, 'D, ... "Z for up to 27 output
files (your original file plus files appended with A, B, ..., 2).

If your original output filespec had an eight-character filename, then
the disassenbler still closes the output file. However, you wll have to
enter a new filespec for the subsequent file. The followi ng nessage wll
informyou of this action:

Qutput file is full; Enter fil espec? >
If your new filespec contains an eight-character filenane, you will continue
to be pronpted the next time another output file is needed. |If, on the other

hand, you enter a filespec with less than an eight-character nanme, automatic
fil espec generation will commence with the next output file, if required.

If your output disk becones full and the disassenbly is not conplete,
you wll be pronpted to change output diskettes - PROVIDED |IT CAN BE
ACCOWPLI SHED. If the disk drive containing the output diskette is a hard
drive [LDCS only], if you are running the disassenbler from Job Control
Language [LDCS only], or if the input is froma disk file |ocated on the same
disk drive as the output disk file, the disassenbly wll abort and the
foll ow ng nessage will be displayed:

Disk is full - Can't conti nue!

O herwi se, the disassenbler will pronpt you to change the output diskette
with the foll owi ng nmessage:

Disk is full!l - Enter new output disk <ENTER>

After replacing the output diskette, depress the <ENTER> key and the
di sassenbl er processing w |l continue.

DSMBLR - 14

M SOSYS Di sassenbler - Disk version |11

DEVELCPI NG A SOQURCE PROGRAM

The best way to enploy the power of the M SOSYS di sassenbler in order to
create a "SOURCE" program the follow ng steps should be perforned:

1. Either disassenble directly froma disk CVD-type file (which will provide
out put of whatever is in the file) and proceed to step 2 or determne the

boundari es of the machine | anguage programin nenory. |If your target program
is on a cassette tape, transfer it to a CMD disk file via a tape-to-disk
utility then proceed to disassenble the disk file. If you insist on reading
the tape programinto nenory by using the "S" control conmmand, you will find

that a better procedure is to use the "T" control command first since it is
possible that the target program may load into the sane region as the
di sassenbler. The START and END values will automatically be initialized to
those determ ned fromthe programtape itself.

2. Disassenble to the video screen or printer to detect regions that may have
been character string literals or data. Make note of these regions on scratch
paper (or the printer output listing) to use in building a screening data
text file.

3. Follow up with a disk output command to generate the SOURCE disk file.
Enter your screening data text filespec at the appropriate tinme so that the
data regions of the target programare interpreted properly.

4. Load the SOURCE disk file into the editor assenbler. If the output has
been partitioned into miltiple files, you will need to use the *GET facility
of EDAS (or *INCLUDE facility of other assenblers).

5. Make an attenpt to scrutinize the listing and comment those sections you
begin to understand. As you becone nore experienced with Z-80 assenbler
code, this will becone an easy task. Illogical code sequences are probably
data areas that you omtted fromthe screening data text file.

DSMBLR - 15

M SOSYS Di sassenbler - Disk version |11

DEVELCPI NG SCREENI NG DATA

The experienced assenbly |anguage programer should have Ilittle
difficulty in detecting the segnments of a target program that are not code
segnent s. However, since everyone cannot be considered "experienced",

herewith are a few tips to keep in mnd when you are screening a target
program f or non-code regi ons.

The first exanple illustrates an easy observation. Note that from the
ASCI1 colum, a nessage is spelled out starting from the |abel "MI0E'. A
good guess is that the nessage extends through address X 011B' even though
the last byte is a NOP instruction. Since the next label is not until after
the NOP, you should first try to interpret from X 010E through X 011B as a
literal. This is done by entering a screening data field as ' $10e-11b".

010B 5A 00145 MD10B LD E, D z
010C 45 00146 LD B, L E
010D 00 00147 NOP .
010E 52 00148 MD1OE LD D, D R
010F 2F 00149 CPL /
0110 53 00150 LD D E S
0111 204C 00151 JR Nz, MD15F L
0113 322042 00152 LD (M4220),A 2 B
0116 41 00153 LD B, C A
0117 53 00154 LD D E S
0118 49 00155 LO CcC I
0119 43 00156 LD B, E C
011A 0D 00157 DEC C

011B 00 00158 NOP .
011C GCs 00159 MD11C PUSH BC E
The next exanple illustrates nonsense code beginning at address X 07F8'.

It appears to be nonsense through X 0808 but starting at X 0809 (which has
a label), the code starts to nake sense. This nust be a data segment since
there is no way to conceptualize literal data. The next question is whether
it is "byte" or "word" data. Since there appears to be boundaries every four
bytes (note the |abel positions), we nmay have byte, word, or even sonething
el se. Experience will show that the segnent is actually floating-point data.
However, you nmay treat it as "byte" data since "word" data will generate
| abel s that may be spurious.

07F4 1F 01196 RRA .
07F5 47 01197 LD B, A G
07F6 18EF 01198 JR MO7E7 .0
07F8 00 01199 MD7F8 NOP

07F9 00 01200 NOP

07FA 00 01201 NOP

07FB 81 01202 ADD AC

07FC 03 01203 MO7FC INC BC .
07FD AA 0i 204 XR D *
O7FE 56 01205 LD D, (HL) \%
O7FF 19 01206 ADD HL, DE

0800 80 01207 MO800 ADD A B

0801 F 01208 POP AF q
0802 227680 01209 LD (MBO76), HL "v.

DSMBLR - 16

M SOSYS Di sassenbler - Disk version |11

0805 45 01210 LD B, L E
0806 AA 01211 XR D *
0807 3882 01212 JR C, M78B 8.
0809 CD5509 01213 MD809 CALL MD955 MU
080C B7 01214 R A 7
080D EAMdA1E 01215 JP PE, MLE4A jJ.
0810 212441 01216 LD HL, Md124 I $A

The next exanple is sonething that you should quickly get famliar wth.
Note the interstitial |abel at address X 13E2'. It is pointing to an address
that contains the byte, X 21'. If this were the beginning of an instruction
it would be a "LD HL,nn" 3-byte instruction. Also, if such were the case, the
two following bytes would not be single-byte instructions but the operand
field of the "LD HL,nn" instruction. You should also note that starting at
X 13D8', the code is nonsense! You should easily observe that the segment
from X 13D8" through X 13El' is a data table. You should also quickly get
used to those values - a power-of-10 table composed of the values, 10000
1000, 100, 10, and 1. Set aside a data screening entry of "#13d8-13el". This
will also correct the deconposition of the "LD HL, nn" instruction

13D2 A0 03053 ML3D2 AND B

13D3 86 03054 ADD A (H) .

13D4 011027 03055 LD BC, M2710 L

13D7 00 03056 NOP .

1308 1027 03057 ML3D8 DINZ ML401 C

13DA E8 03058 RET PE h

13DB 03 03059 INC BC .

13DC 64 06060 LD H H d

| 3DD 00 03061 NOP

| 3DE OA 03062 LD A (BO

13DF 00 03063 NOP .

13E0 010021 03064 LD BC, M2100]
03065 MI3E2 EQU $-1

13E3 82 03066 ADD AD

13E4 09 03067 ADD HL, BC

A great many tables of data relate to addresses. These are tables used
as pointers or relocation data. They are easily picked out by nonsense code
and logical values as "words". In the following partial listing, note that
the first byte varies the full range of byte values (like a |ow order value
of an address) while the second byte is in a finite range (like the high-
order byte of an address). Look for the scope of the table and you will have
anot her "word" segment to be screened with a "#1608-bbbb" field.

1608 8A 03376 ML608 ADC A D

1609 09 03377 ADD HL, BC .
160A 37 03378 SCF 7
160B 0B 03379 DEC BC .
160C 77 03380 LD (HY),A w
160D 09 03381 ADD HL, BC .
160E D427EF 03382 CALL NC, MEF27 T o
1611 2AF527 03383 LD HL, (M7F5) *u'
1614 E7 03384 RST 20H g

DSMBLR - 17

M SOSYS Di sassenbler - Disk version |11

1615 13 03385 INC DE .

1616 C9 03386 RET I

1617 14 03387 INC D

1618 09 03388 ADD HL, BC

1619 08 03389 EX AR AF .

161A 39 03390 ADD HL, SP 9

Progranmers will, at tines, provide "hidden" entry points by prefixing a

one, two, or three byte instruction with a byte value that turns the
instruction into a two, three, or four byte instruction. Its function is to
mask the "hidden" instruction when reached in-line. Note the interstitial
| abel s ML99A, ML99D, and ML9AO. Doesn't the code | ook funny? Cbserve that the
code is simlar to the code at X 1997' if entered at the |abel entries. The
code would, in fact, be additional "LD E, n" instructions with "n" taking on
different values. Set up screening data fields as "1999, 199c, 199f" and the
code wll be properly deconposed. Incidentally, the Iabel "ML998" was
probably spuriously generated by deconposing a data regi on as code.

1991 2ADA40 04054 M1991 LD HL, (M4ODA) *Z@

1994 22A240 04055 LD (MIOA2),HL ""@
1997 1EO02 04056 M1997 LD E, 02H
04057 M998 EQU $-1
1999 011E14 04058 LD BC M41E
04059 ML99A EQU $-2
199C 011EOQOO 04060 LD BC MO1lE
04061 ML99D EQU $-2
199F 011E24 04062 LD BC MA41E]

04063 MI9A0 EQU $-2
19A2 2AA240 04064 MI9A2 LD HL, (MAOA2) *"@
19A5 22EA40 04065 LD (MIOEA),HL "j@

The next exanple illustrates the same kind of "hidden" entry. Only this
time, an extra byte of X DD is inserted to turn "LD HL,nn" instructions into
"LD I X, nn" instructions. Register pair HL would be set to the value | oaded at
what ever entry was taken. Set up screening data as "24fa, 24fe".

24F6 C9 00135 RET I
24F7 21D225 00136 M24F7 LD HL, M25D2 ! R%
24FA DD219825 00137 LD | X, M2598 1'. %
00138 M24FB EQU $-3
24FE DD217E25 00139 LD | X, M257E 1'. %
00140 M24FF EQU $-3
2502 3EOC 00141 LD A OCH >,
2504 EF 00142 RST 28H 0
2505 21FFFF 00143 LD H., MFFFF I,
These exanples will put you on the right track when interpreting the

di sasssenbl ed output for data screening. Cean up literal segnents first to
reduce the frequency of spurious |abels. Pay close attention to segnents that
do not nmeke sense as code and screen as data. Analyze the reason for
interstitial labels. Are they used to inplenment "hidden" entry points? In
short time, you will becone "experienced" in producing a near-perfect source
docunent .

DSMBLR - 18

M SOSYS Di sassenbler - Disk version |11

TEXT/ BAS

The followi ng BASIC program nmay be used to enter screening text data
into a file. It is a primtive programto be used only if you have no other
text editor.

10 LI NEI NPUT "FI LENAVE/ EXT"; F$: |F F$="" THEN CLCSE: END
20 OPEN "O', 1, F$

30 PRI NT"ENTER SCREENI NG DATA (NULL LINE TO END) "

40 LI NEI NPUT AS

50 IF A$ = "" THEN CLCSE: END

60 PRI NT#1, A$: A$="": GOTO 40

MODEL | TRSDOS PATCH

Model | TRSDOS wusers wll find difficulty in reading the DSMBLR
distribution disk (this is due to the data address mark used for the
directory). Therefore, before making a BACKUP or copying files from the
DSMBLR di skette, you will need to patch your TRSDOS 2.3. This change will in
no way affect the operation of your TRSDOS. To prepare for this patch, obtain
a fresh BACKUP of your TRSDOS 2.3. Enter the follow ng BASIC program and RUN
it.

10 COPEN'R’', 1, " SYS0/ SYS. VKI A: 0"
20 FIELD 1,171 AS R1$, 1 AS RS$, 84 AS R2$
30 CGET 1,3: LSET RS$="<": PUT 1,3: CLOSE: END

This program will change the byte in SYSO/SYS that |oads at address X 46B0
fromX 7C to X 3C . After you RUN the program re-BOOl your TRSDOS di skette
to correct the byte in nmenory.

Alternatively, if you do not want to patch your TRSDOS system di skette,
you may change the value directly in nenory by the use of DEBUG This
procedure is as follows:

At TRSDOS Ready, type DEBUG fol |l owed by <ENTER>.
Depress the <BREAK> key to enter the DEBUCger.
Type MA6BO fol |l owed by the <SPACE> bar.

Type 3C fol |l owed by <ENTER>.

Type 402D fol | owed by <ENTER>.

OhrhwONE

Now, using either method noted above, COPY the files fromthe DSMBLR di skette
to your TRSDOS di skette.

DSMBLR - 19

	Top of document
	GENERAL
	DISTRIBUTION DISKETTE
	EXECUTION INSTRUCTIONS
	CONTROL FUNCTION OPTIONS
	INPUT MODE SPECIFICATION
	DISASSEMBLY ADDRESS PROMPTS
	SCREENING DATA ENTRY
	OUTPUT COMMAND OPTIONS
	DEVELOPING A SOURCE PROGRAM
	DEVELOPING SCREENING DATA
	TEXT/BAS
	MODEL I TRSDOS PATCH

